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Semi-automated genome annotation
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Human interpretation: 1 = “Enhancer”, 2 = “Exon’, ...

Input: Real-valued functional genomics data tracks defined over
the genome.

Output: Partition of the genome with integer labels assigned to
each segment (celll type specific)

Model: Hidden Markov model or dynamic Bayesian network.
Examples: ChromHMM, Segway

Existing feed-forward Neural Model (Avocado)

* Model trained on a tensor of
cell type, assay and genomic
position and corresponding
embeddings (factors) are
learnt

Cell Type Factors

* These embeddings are
concatenated to impute the
track value at each position in
the tensor using a Neural
Network
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Model classifies important genomic phenomena

Sequential LSTM Model

UBC

Electrical and
Computer
Engineering

Genomic
AxIs

Epiganomeas
¥ ASSAYS

L Ol

* Model captures spatial relationships of neighboring
genomic positions by the virtue of the LSTM being
able to maintain long term dependencies

« Backbone is an Autoencoder framework comprising
of an Encoder and a Decoder

« The Encoder and the Decoder are LSTM’s with the
given configuration

 The Assays serving as the input to the Encoder are
arranged in a matrix format and fed in one frame
length at a time

« The hidden states of the LSTM are used as
annotations. These are continuous and cell type
agnostic.

Ablations

MAP vs hidden nodes
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Results

Model captures evolutionary activity
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 Different versions of the model are tried
with increasing number of hidden nodes
and its noted that a single layer with layer
norm provides the best tradeoff with
respect to the parameters and MAP

Model provides smoother features
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Difference Iin positions across the genome




