You May Also Enjoy
Enhancing Factual Accuracy in Large Language Models: Integrating Decoding Strategies and Model Steering
20 minute read
Published:
The emergence of open-source Large Language Models (LLMs) like Llama has revolutionized natural language generation (NLG), making advanced conversational AI accessible to a broader audience [1]. Despite their impressive capabilities, these models often grapple with a significant challenge: factual hallucinations. Factual hallucinations occur when an AI model generates content that is unfaithful to the source material or cannot be verified against reliable data [2]. This issue is particularly concerning in critical and information-dense fields such as health, law, finance, and education, where misinformation can have catastrophic consequences [3][4].
Perspectives on the future of AI
13 minute read
Published:
How big are the models going to get and how much longer is the scaling hypothesis going to hold? It’s unclear, but according to current performance trends, which haven’t shown signs of plateauing (GPT-4o, Claude 3.5 Sonnet, Gemini-1.5-Pro, Llama-3.1-405B, Grok-2), and the power budget of announced data centres (5GW OpenAI/Microsoft Stargate campus), it is likely that there is an order of magnitude left (OOM) to climb in model size. This Epoch AI research covers these scenarios in depth and estimates training runs of the order of ~2e29 FLOPs being possible by 2030, which would be 4 OOMs larger than GPT-4 (2e25 FLOPs). These training runs will primarily be power constrained, followed by chips, data, and latency.
A time capsule
less than 1 minute read
Published:
In progress
The need for a critical mineral demand model incorporating technical change
17 minute read
Published:
Introduction
Studying the effects of technical change on critical mineral demand and supply in the context of the low-carbon energy transition is an important and open area of research. Despite the crucial role played by these minerals in low-carbon technologies, long-term demand projections remain uncertain due to intricate interactions between drivers of technical change. In this writeup, I lay out what a framework that studies the effects of technical change on critical mineral demand would look like, how it can be developed, and what are its potential use cases.